UNIFORM PARTITIONS OF AN INTERVAL

BY

VLADIMIR DROBOT

ABSTRACT. Let $\{x_n\}$ be a sequence of numbers in [0, 1]; for each n let $u_0(n), \ldots, u_n(n)$ be the lengths of the intervals resulting from partitioning of [0, 1] by $\{x_1, x_2, \ldots, x_n\}$. For p > 1 put $A^{(p)}(n) = (n+1)^{p-1} \sum_{i=1}^{n} [u_j(n)]^p$; the paper investigates the behavior of $A^{(p)}(n)$ as $n \to \infty$ for various sequences $\{x_n\}$. THEOREM 1. If $x_n = n\theta \pmod{1}$ for an irrational $\theta > 0$, then $\liminf A^{(p)}(n) < \infty$. However $\limsup A^{(p)} < \infty$ if and only if the partial quotients of θ are bounded (in the continued fraction expansion of θ). THEOREM 2 gives the exact values for 0 lim inf and 0 lim sup when $0 = \frac{1}{2}(1 + \sqrt{5})$. THEOREM 3. If x_n 's are random variables, uniformly distributed on 0, 1, then 0 lim 0 lim 0 lim 0 lim surely.

1. Introduction. Let x_1, x_2, \ldots be an infinite sequence of points between 0 and 1. For each n the points x_1, x_2, \ldots, x_n partition the interval [0, 1] into n + 1 subintervals. Extensive studies have been made of irregularities of such partitions by considering the quantity D_n , called discrepancy, defined by

$$D_n = \sup_{0 \le \alpha < \beta \le 1} \left| \frac{1}{n} \sum_{j=1}^n \chi_{(a,b)}(x_j) - (\beta - \alpha) \right|,$$

where $\chi_E(\cdot)$ is the characteristic function of a set E. (See [6].) In this paper we propose to study the problem by introducing a different measure of uniformity defined as follows. For each n, let $x_1(n), x_2(n), \ldots, x_n(n)$ be the points x_1, x_2, \ldots, x_n arranged in nondecreasing order, let $x_0(n) \equiv 0, x_{n+1}(n) \equiv 1, u_j(n) = x_{j+1}(n) - x_j(n)$ ($j = 0, 1, \ldots, n$), and for each p > 1 consider

(1)
$$A^{(p)}(n) = (n+1)^{p-1} \sum_{i=0}^{n} \left[u_i(u) \right]^p.$$

The closer to 1 the value of $A^{(p)}(n)$ is, the more uniform is the partition (if the points x_1, x_2, \ldots, x_n divide [0, 1] into n + 1 equal parts then $A^{(p)}(n) = 1$). In this paper we investigate $\lim_n A^{(p)}(n)$ for various sequences x_1, x_2, \ldots . We begin with the classical case $x_n = n\theta \pmod{1}$ for some irrational $\theta > 0$. It turns out that the limiting behavior of $A^{(p)}(n)$ strongly depends on the arithmetic character of θ . We have the following theorem.

THEOREM 1. Let $x_n = n\theta \pmod{1}$ for an irrational $\theta > 0$ and let $A^{(p)}(n)$ be defined by (1). We have for p > 1:

I. $\lim \inf_{n} A^{(p)}(n) < \infty$;

II. $\limsup_{n} A^{(p)}(n) < \infty$ if and only if the partial quotients of the continued fraction expansion of θ are bounded.

Received by the editors June 23, 1980 and, in revised form, September 29, 1980. AMS (MOS) subject classifications (1970). Primary 10K30.

For certain values of θ both $\limsup A^{(p)}(n)$ and $\liminf A^{(p)}(n)$ can be evaluated as the following theorem shows:

Theorem 2. Let
$$\theta = \frac{1}{2}(1 + \sqrt{5})$$
 so that $\theta^2 = \theta + 1$. Let
$$\psi(t) = 5^{-p/2}(\theta + t)^{p-1} [t(\theta - 1)^p + (1 - t)\theta^p + t + \theta - 1].$$

Let $A^{(p)}(n)$ be obtained from the sequence $n\theta \pmod{1}$ as in (1). We have

$$\liminf_{n} A^{(p)}(n) = \psi(0) = \psi(1) = 5^{-p/2}(\theta^{2p-1} + \theta^{p-2}),$$

$$\lim_{n} \sup_{n} A^{(p)}(n) = \psi(t_0),$$

where

$$t_0 = (1 - p^{-1})(\theta^p - (\theta - 1)^p - 1)/(\theta^p + \theta - 1).$$

Special cases of Theorems 1 and 2 (p=3) appear in [2]. We discuss next the behavior of $A^{(p)}(n)$ in case the sequence $\{x_n\}$ is chosen at random.

THEOREM 3. Let X_1, X_2, \ldots be a sequence of independent random variables uniformly distributed on [0, 1], and let $A^{(p)}(n)$ be the random variable defined by (1). Then $\lim_{n} A^{(p)}(n) = \Gamma(p+1)$ almost surely.

We introduce the following definition.

DEFINITION. Let $\{x_n\}$ be a sequence of numbers in an interval [0, 1] and let $A^{(p)}(n)$ be given by (1). We say that this sequence p-partitions [0, 1] if $\lim_n A^{(p)}(n)$ exists.

COROLLARY. For every p > 1 there is a sequence which p-partitions [0, 1].

This is immediate from Theorem 3. We now proceed with the proofs of the theorems.

2. Proof of Theorems 1 and 2. We summarize first the basic facts about the distribution of the points $\{\theta\}$, $\{2\theta\}$, ..., $\{n\theta\}$ in [0, 1]. (Here $\{t\} = t \pmod{1}$.) For the details and references see [7]. Let n be fixed, let $1 \le a_n \le n$ be such that $\{a_n\theta\}$ is the smallest among $\{\theta\}$, $\{2\theta\}$, ..., $\{n\theta\}$ and let $1 \le b_n \le n$ be such that $\{b_n\theta\}$ is the largest. Set $\alpha_n = \{a_n\theta\}$, $\beta_n = 1 - \{b_n\theta\}$. The interval [0, 1] is divided by $\{\theta\}$, $\{2\theta\}$, ..., $\{n\theta\}$ into n+1 subintervals as follows: $n+1-a_n$ of them are of length α_n , $\alpha_n + b_n - (n+1)$ of them are of length $\alpha_n + \beta_n$ and $\alpha_n + 1 - \alpha_n$ have length β_n . The fact that $\alpha_n + 1 \le \alpha_n + \alpha_n$ can be deduced from the definitions of α_n and α_n . Thus with this notation,

(2)
$$A^{(p)}(n) = (n+1)^{p-1} [(n+1-a_n)\alpha_n^p + (a_n+b_n-n-1)(\alpha_n+\beta_n)^p + (n+1-b_n)\beta_n^p].$$

One can actually find a_n and b_n in terms of the continued fraction expansion of θ :

$$\theta = [d_0; d_1, d_2, \dots] = d_0 + \frac{1}{d_1} + \frac{1}{d_2} + \cdots$$

As usual, we set $q_{-1} = 0$, $p_{-1} = 1$, $q_0 = 1$, $p_0 = d_0$, $q_{k+1} = d_{k+1}q_k + q_{k-1}$, $p_{k+1} = d_{k+1}p_k + p_{k-1}$, $\delta_k = (-1)^k(q_k\theta - p_k) > 0$. Given n, to find a_n and α_n express n as

(3)
$$n = q_{2m} + rq_{2m+1} + s, \quad 0 \le r < d_{2m+2}, 0 \le s < q_{2m+1},$$

so that $q_{2m} \leq n < q_{2m+2}$. Then

(4)
$$a_n = q_{2m} + rq_{2m+1}, \quad \alpha_n = \delta_{2m} - r\delta_{2m+1}.$$

To find b_n and β_n we express n as

(5)
$$n = q_{2m-1} + uq_{2m} + v, \qquad 0 \le u < d_{2m+1}, 0 \le v < q_{2m},$$

so that $q_{2m-1} \le n < q_{2m+1}$. We have

(6)
$$b_n = q_{2m-1} + uq_{2m}, \qquad \beta_n = \delta_{2m-1} - u\delta_{2m}.$$

The following are standard facts about continued fractions (see [4]):

(7)
$$d_{k+1} = \left[\delta_{k-1}/\delta_k \right], \quad \delta_{k+1} = \delta_{k-1} - d_{k+1}\delta_k, \\ d_{k+2}/q_{k+2} < \delta_k < 1/q_{k+1}.$$

We are now ready to prove Theorem 1. Set $x_n = n\theta \pmod{1}$, p > 1 and let

$$A(n) = A^{(p)}(n) = (n+1)^{p-1} \sum_{j=0}^{n} [u_j(n)]^p$$

be given as in (1). To show I we will show that $A(q_{2m} + q_{2m+1} - 1)$ is bounded. From the discussion above and (2) we see that for $n = q_{2m} + q_{2m+1} - 1$ the following hold:

$$a_n = q_{2m}, \quad b_n = q_{2m+1}, \quad \alpha_n = \delta_{2m}, \quad \beta_n = \delta_{2m+1},$$

and using (7) we get

$$A(n) = (q_{2m} + q_{2m+1})^{p-1} (q_{2m} \delta_{2m+1}^p + q_{2m+1} \delta_{2m}^p)$$

$$\leq (q_{2m} + q_{2m+1})^{p-1} (q_{2m} q_{2m+2}^{-p} + q_{2m+1} q_{2m+1}^{-p})$$

$$= O(1) \qquad (m \to \infty).$$

Hence I follows. To show II assume that all the partial quotients d_k of θ are bounded by D, say. We wish to show that A(n) is bounded. We claim that a number c > 0 can be chosen such that the following three inequalities hold:

(8)
$$c^{-1} < \delta_{k-1}/\delta_k < c, \quad c^{-1} < a_n/b_n < c, \quad c^{-1} < \alpha_n/\beta_n < c.$$

The first inequality holds for some c > 0 because $[\delta_{k-1}/\delta_k] = d_{k+1}$ and we are assuming that d's are bounded. Suppose next that $q_{2m} \le n < q_{2m+1}$ for some m so that $a_n = q_{2m}$ (see (4)). Let u and v be determined by (5) so that

$$\frac{a_n}{b_n} = \frac{q_{2m}}{uq_{2m} + q_{2m-1}} \le \frac{q_{2m}}{q_{2m-1}} = \frac{d_{2m}q_{2m-1} + q_{2m-2}}{q_{2m-1}}$$
$$\le d_{2m} + 1 \le D + 1.$$

On the other hand,

$$\frac{a_n}{b_n} \geq \frac{q_{2m}}{d_{2m+1}q_{2m}+q_{2m-1}} \geq \frac{1}{d_{2m+1}+1} \geq \frac{1}{D+1}.$$

If n satisfies $q_{2m-1} \le n < q_{2m}$ then the analysis is based on (5) and (3) and leads to the same conclusion. As for the ratio of α_n and β_n we have the following: For $q_{2m} \le n < q_{2m+1}$ and u given by (5),

$$1 \leq \frac{\alpha_n}{\beta_n} = \frac{\delta_{2m}}{\delta_{2m-1} - u\delta_{2m}} \leq \frac{\delta_{2m}}{\delta_{2m+1}} < d_{2m+2} + 1 \leq D + 1.$$

For $q_{2m-1} \le n < q_{2m}$ and r given by (3),

$$1 \leqslant \frac{\beta_n}{\alpha_n} = \frac{\delta_{2m-1}}{\delta_{2m-2} - r\delta_{2m-1}} \leqslant \frac{\delta_{2m-1}}{\delta_{2m}} \leqslant d_{2m+1} + 1 \leqslant D + 1.$$

This establishes (8). To show now that A(n) is bounded, we take (2) and bound all the terms by $a_n\beta_n$ using (8):

$$A(n) \leq (a_n + b_n)^{p-1} \left[b_n \alpha_n^p + (b_n - 1)(\alpha_n + \beta_n)^p + a_n \beta_n^p \right]$$

$$\leq M(a_n \beta_n)^p$$

where M depends only on the constant c from (8) (and hence on $\max d_k$). Since $a_n\beta_n + b_n\alpha_n = 1$, the first part of II follows. We next show the converse of II, that is, if the partial quotients are unbounded then $\limsup A(n) = \infty$.

There are two cases: either $\{d_{2m}\}$ is unbounded or $\{d_{2m+1}\}$ is unbounded. We present the arguments in the first case only, the second is completely analogous. For each m let $y_m = [d_{2m+2}/2] - 2$, so that $y_m > 0$ for infinitely many m's and $\limsup y_m = \infty$. Let

$$n = n_m = q_{2m} + (y_m + 1)q_{2m+1} - 1$$

= $q_{2m+1} + (q_{2m} + y_m q_{2m+1} - 1)$.

For those m's for which $y_m > 1$ we have from (3)–(6),

$$a = q_{2m} + y_m q_{2m+1}, \quad \alpha = \delta_{2m} - y_m \delta_{2m+1} > y_m \delta_{2m+1},$$

 $b = q_{2m+1}, \quad \beta = \delta_{2m+1}, \quad a+b=n+1.$

Thus, substituting in (2),

$$A(n_m) = (q_{2m} + (y_m + 1)q_{2m+1})^{p-1}(q_{2m+1}\alpha^p + (q_{2m} + y_mq_{2m+1})\beta^p)$$

$$\geq (y_mq_{2m+1})^{p-1}(q_{2m+1}y_m^p\delta_{2m+1}^p) = y_m^{2p-1}q_{2m+1}^p\delta_{2m+1}^p.$$

It follows from (7) that

$$(q_{2m+1}\delta_{2m+1})^{p} \geqslant \left[\frac{q_{2m+1}d_{2m+3}}{d_{2m+3}q_{2m+2} + q_{2m+1}}\right]^{p} \geqslant \left[\frac{q_{2m+1}}{q_{2m+2} + q_{2m+1}}\right]^{p}$$

$$= \left[\frac{q_{2m+1}}{d_{2m+2}q_{2m+1} + q_{2m} + q_{2m+1}}\right]^{p} \geqslant (d_{2m+2} + 3)^{-p}.$$

Thus $A(n_m) \ge y_m^{2p-1} (d_{2m+2} + 3)^{-p}$, so $\limsup A(n) = \infty$.

This completes the proof of Theorem 1 and we take up Theorem 2. For $\theta = \frac{1}{2}(1 + \sqrt{5})$ all partial quotients are equal to 1 and we have

$$q_{-1} = 0, \quad q_0 = 1, \quad q_{k+1} = q_k + q_{k-1},$$

$$(9) \qquad p_{-1} = 1, \quad p_0 = 1, \quad p_{k+1} = p_k + p_{k-1},$$

$$\delta_{k+1} = \delta_{k-1} - \delta_k, \quad q_{k-1} = 5^{-1/2} (\theta^k - (-1)^k \theta^{-k}), \quad \delta_k = \theta^{-(k+1)},$$

so that

(10)
$$\lim_{k} (q_k/\theta^k) = \theta/\sqrt{5} .$$

Let $0 \le t \le 1$ be given, and suppose $0 < t_k < 1$ are such that $t_k q_{2k-1} - 1$ is a positive integer and $t_k \to t$. We will show that if $n_k = q_{2k} + t_k q_{2k-1} - 1$ then

(11)
$$\lim_{k} A(n_{k}) = 5^{-p/2}(\theta + t)^{p-1} [t(\theta - 1)^{p} + (1 - t)\theta^{p} + t + \theta - 1]$$
$$= \psi(t).$$

Similarly, if $0 < s_k < 1$ is such that $s_k q_{2k} - 1$ is a positive integer and $s_k \to t$, then with $n_k = q_{2k+1} + s_k q_{2k} - 1$,

(12)
$$\lim_{k} A(n_k) = \psi(t).$$

To show (11) we have from (3)–(6):

$$a = q_{2k}, \quad \alpha = \delta_{2k}, \quad b = q_{2k-1}, \quad \beta = \delta_{2k-1}, \quad n+1-a = t_k q_{2k-1},$$

 $a + b - (n+1) = (1-t_k)q_{2k-1}, \quad n+1-b = q_{2k} + (t_k-1)q_{2k-1}.$

Substituting these values into (2) we get

$$A(n_k) = (q_{2k} + t_k q_{2k-1})^{p-1} \left[t_k q_{2k} \delta_{2k}^p + (1 - t_k) q_{2k-1} (\delta_{2k} + \delta_{2k-1})^p + (q_{2k} + (t_k - 1) q_{2k-1}) \delta_{2k-1}^p \right].$$

Substituting values for δ 's from (9) we obtain

$$A(n_k) = (q_{2k} + t_k q_{2k-1})^{p-1} \left[t_k q_{2k-1} \theta^{-(2kp+p)} + (1 - t_k) q_{2k-1} (1 + \theta^{-1})^p \theta^{-2kp} + (q_{2k} + (t_k - 1) q_{2k-1}) \theta^{-2kp} \right].$$

From (10) it follows then that

$$\lim_{k} A(n_{k}) = 5^{-p/2}(\theta + t)^{p-1} [t/\theta^{p} + (1-t)(1+\theta^{-1})^{p} + \theta + t - 1],$$

which implies (11) since $1/\theta = \theta - 1$ and $1 + 1/\theta = \theta$. Equation (12) follows pretty much the same way. Let now $\{n_j\}$ be such that $A(n_j)$ converges to ξ , say. Clearly n_j belongs infinitely often to an interval of the form $[q_{2k+1}, q_{2k+1})$ or infinitely often to an interval of the form $[q_{2k+1}, q_{2k+2})$. In the first case $n_j = q_{2k} + t_k q_{2k-1} - 1$ for some $0 < t_k < 1$ and k = k(j), depending on j; in the second case $n_j = q_{2k+1} + s_k q_{2k} - 1$, $0 < s_k < 1$, k = k(j). By taking subsequences, if needed, we may assume that t_k (or s_k) converges to t, say. Thus in both cases $\lim_j A(n_j) = \xi = \psi(t)$ for some $0 \le t \le 1$. Hence $\lim_k A(n)$ and $\lim_k A(n)$ are, respectively, the maximum and the minimum of $\psi(t)$ for $0 \le t \le 1$. By direct calculation we can obtain that

(13)
$$\psi(0) = \psi(1) = 5^{-p/2} (\theta^{2p-1} + \theta^{p-2}).$$

The simplification is based on the fact that $\theta^2 = \theta + 1$. Also

$$5^{p/2}\psi'(t) = (d/dt)(\theta + t)^{p-1} [t(-\theta^p + (\theta - 1)^p + 1) + \theta^p + \theta - 1]$$

$$= (d/dt)(\theta + t)^{p-1} [Et + f]$$

$$= (\theta + t)^{p-2} [(p-1)(Et + F) + E(\theta + t)];$$

$$E = -\theta^p + (\theta - 1)^p + 1, \qquad F = \theta^p + \theta - 1.$$

Solving the equation $\psi'(t) = 0$ gives the only solution between 0 and 1:

$$t_0 = (1 - p^{-1})(\theta^p - (\theta - 1)^p - 1)/(\theta^p + \theta - 1).$$

To finish the proof we will show that $\psi'(0) > 0$, which is certainly sufficient since $\psi(0) = \psi(1)$ Now, from (14),

$$5^{p/2}\psi'(0) = \theta^{p-2} [(p-1)(\theta^p + \theta - 1) + \theta(-\theta^p + (\theta - 1)^p + 1)]$$

= $\theta^{p-2} f(p)$.

Thus it is enough to show that f(p) > 0 for p > 1. Direct calculation gives f(1) = 0 and

$$\begin{split} f'(p) &= (p-1)\theta^p \log \theta + \theta^p + \theta - 1 \\ &+ \theta \big[-\theta^p \log \theta + (\theta - 1)^p \log (\theta - 1) \big] \\ &= \theta^p \big[(p-1) \log \theta + 1 - \theta \log \theta \big] - (\log \theta) / \theta^{p-1} + \theta - 1. \end{split}$$

Since $1 - \theta \log \theta = 0.221 \dots$, f'(p) is an increasing function for p > 1. Also,

$$f'(1) = \theta(1 - \theta \log \theta) - \log \theta + \theta - 1 = 0.495...$$

so that f(p) is positive for p > 1. The proof of Theorem 2 is now complete.

3. Proof of Theorem 3. Since p is going to be fixed throughout, we will write A_n for $A^{(p)}(n)$. The basic tool to be used is the martingale convergence theorem: Let F_n be an increasing sequence of σ -fields, Z_n a random variable measurable with respect to F_n . If $E(Z_{n+1}|F_n)=Z_n$ and $\sup_n E(|Z_n|)<\infty$, then the sequence Z_n converges almost surely. E(Z|F) is the conditional expectation of Z relative to F. (See J. L. Doob [1] for the details.) We let $(X_1^{(n)},\ldots,X_n^{(n)})$ be the order statistic of size n, i.e. the values of X_1,X_2,\ldots,X_n arranged in increasing order, put $X_0^{(n)}\equiv 0$, $X_{n+1}^{(n)}\equiv 1$ and introduce random variables $U_j(n)=X_{j+1}^{(n)}-X_j^{(n)}$ so that once again

$$A_n = (n + 1)^{p-1} \sum_{j=0}^{n} [U_j(n)]^p$$

is a random variable. We take our σ -fields to be $F_n = F(U_0, U_1, \ldots, U_n)$, the σ fields generated by the random variables U_0, U_1, \ldots, U_n and consider the random variable

$$Z_n = A_n + \sum_{j=1}^{n-1} [A_j - E(A_{j+1}|F_j)].$$

We will show the following:

- (a) $\{Z_n\}$ is a martingale relative to $\{F_n\}$.
- (b) $\sum_{n=1}^{\infty} E(|A_n E(A_{n+1}|F_n)|) < \infty$.
- (c) $\lim_{n} E(|A_n|) = \Gamma(p+1)$.

Note that (b), (c) imply $\limsup E(|Z_n|) < \infty$ so that Z_n converges a.e. by the martingale convergence theorem. In addition, (b) shows $\sum [A_n - E(A_{n+1}|F_n)]$ converges a.e. and thus A_n converges a.e. The limit will be identified later. The proof of (a) is straightforward:

$$Z_{n+1} = Z_n + A_{n+1} - A_n + A_n - E(A_{n+1}|F_n)$$

= $Z_n + A_{n+1} - E(A_{n+1}|F_n)$

so that $E(Z_{n+1}|F_n) = Z_n$.

Before we take up (b) we recall facts regarding random variables $U_0(n)$, $U_1(n)$, ..., $U_n(n)$ (see [5, Chapter 9]). Since $U_0(n) + \cdots + U_n(n) \equiv 1$, the U's are certainly not independent, but if we delete one of them, the remaining n are "uniformly" distributed on the simplex

$$T_n = \{(t_1, t_2, \dots, t_n): t_i \ge 0, t_1 + t_2 + \dots + t_n \le 1\};$$

more precisely, the joint density function of the remaining n is given by

$$f_n(t_1, t_2, \ldots, t_n) = \begin{cases} n! & \text{if } (t_1, t_2, \ldots, t_n) \in T_n, \\ 0 & \text{otherwise.} \end{cases}$$

Thus for any $\alpha > 0$ and any i,

(15)
$$E([U_i(n)]^{\alpha}) = n! \int_{T_n} x_i^{\alpha} dx_1 dx_2 \dots dx_n = \frac{n! \Gamma(\alpha + 1)}{\Gamma(n + \alpha + 1)}.$$

Similarly for any $\alpha > 0$, $\beta > 0$, $i \neq j$,

(16)
$$E([U_i(n)]^{\alpha}[U_j(n)]^{\beta}) = n! \int_{T_n} x_i^{\alpha} x_j^{\beta} dx_1 \dots dx_n$$
$$= n! \Gamma(\alpha + 1) \Gamma(\beta + 1) / \Gamma(n + \alpha + \beta + 1).$$

The values of these integrals can be either evaluated directly or looked up in [3]. Notice that the right-hand side of both of the above formulas is independent of i and j.

To prove (b) we use the Cauchy-Schwarz inequality $E(|W|) \le [E(W^2)]^{1/2}$ with $W = E(A_{n+1}|F_n) - A_n$ and show that for some constant c(p), depending only on p, we have

$$E([E(A_{n+1}|F_n) - A_n]^2) \le c(p)n^{-3}.$$

This will certainly prove (b) since $\sum n^{-3/2}$ converges. We derive now the formula for $E(A_{n+1}|F_n)$. Since X_{n+1} is uniformly distributed on [0, 1] and independent of U_0, \ldots, U_n we have

$$E(A_{n+1}|U_0(n) = u_0, U_1(n) = u_1, \dots, U_n(n) = u_n)$$

$$= (n+2)^{p-1} \sum_{j=0}^n \int_0^{u_j} \left[\sum_{\substack{i=0 \ i \neq j}}^n u_i^p + t^p + (u_j - t)^p \right] dt$$

$$= (n+2)^{p-1} \sum_{j=0}^n \left[\sum_{\substack{i=0 \ i \neq j}}^n (u_i^p u_j) + \frac{2}{p+1} u_j^{p+1} \right]$$

$$= (n+2)^{p-1} \left[\frac{1}{(n+1)^{p-1}} A_n - \sum_{j=0}^n \left(1 - \frac{2}{p+1} \right) u_j^{p+1} \right]$$

$$= A_n + \left[\frac{(n+2)^{p-1} - (n+1)^{p-1}}{(n+1)^{p-1}} \right] A_n - (n+2)^{p-1} \frac{p-1}{p+1} \sum_{j=0}^n u_j^{p+1}$$

$$= A_n + \left[(n+2)^{p-1} - (n+1)^{p-1} \right] \sum_{j=0}^n u_j^p - (n+2)^{p-1} \frac{p-1}{p+1} \sum_{j=0}^n u_j^{p+1}.$$

Thus

(17)
$$E(A_{n+1}|F_n) - A_n = \sum_{j=0}^n \left[a_n U_j^p(n) - b_n U_j^{p+1}(n) \right],$$

where

$$a_n = (n+2)^{p-1} - (n+1)^{p-1} = (p-1)n^{p-2}(1+o(1))$$

and

$$b_n = (n+2)^{p-1} \frac{p-1}{p+2} = n^{p-1} \frac{p-1}{p+1} (1+o(1)).$$

In view of remarks after (16) we get (writing U_k for $U_k(n)$)

$$\begin{split} E\Big(\big[\,E(A_{n+1}|F_n)-A_n\,\big]^2\Big) &= E\Big(\bigg[\sum_{j=0}^n \,a_nU_j^p-b_nU_j^{p+1}\,\bigg]^2\Big) \\ &= nE\Big(\big[\,a_nU_0^p-b_nU_0^{p+1}\,\big]^2\Big) \\ &\quad + n(n+1)E\Big(\big[\,a_nU_0^p-b_nU_0^{p+1}\,\big]\big[\,a_nU_1^p-b_nU_1^{p+1}\,\big]\Big) \\ &= n\big[\,a_n^2E\big(\,U_0^{2p}\big)-2a_nb_nE\big(\,U_0^{2p+1}\big)+b_nE\big(\,U_0^{2p+2}\big)\,\big] \\ &\quad + n(n+1)\big[\,a_n^2E\big(\,U_0^pU_1^p\big)-a_nb_n\big\{\,E\big(\,U_0^pU_1^{p+1}\big)+E\big(\,U_0^{p+1}U_1^p\big)\big\} \\ &\quad + b_n^2E\big(\,U_0^{p+1}U_1^{p+1}\big)\,\big] \\ &= nP_n+n(n+1)\,Q_n. \end{split}$$

We will show that both nP_n and $n(n+1)Q_n$ are $O(n^{-3})$, the implicit constant depending on p only. Before we do that we need the following estimate:

(18)
$$n!/\Gamma(n+2p+1) \leq C_1(p)n^{-2p},$$

 $C_1(p)$ depending on p alone. Indeed, using Stirling's formula

$$\log \Gamma(x) = \left(x - \frac{1}{2}\right) \log x - x + \log \sqrt{2\pi} + o(1)$$

we get

$$\log(n!/\Gamma(n+2p+1)) = \log \Gamma(n+1) - \log \Gamma(n+2p+1)$$

$$= (n+\frac{1}{2})\log(n+1) - (n+1) - (n+2p+\frac{1}{2})\log(n+2p+1)$$

$$+ n+2p+1+O(1)$$

$$= n[\log(n+1) - \log(n+2p+1)]$$

$$+ \frac{1}{2}\lceil \log(n+1) - \log(n+2p+1) \rceil - 2p\log n + O(1)$$

Since for any fixed d, $x(\log(x+d) - \log x) \to d$ $(x \to \infty)$, the result follows. We now estimate nP_n . From the definition of P_n and (15)–(17) we have

$$nP_n = n! n \left[(p-1)^2 n^{2p-4} \frac{\Gamma(2p+1)}{\Gamma(n+2p+1)} - \frac{(p-1)^2}{p+1} n^{2p-3} \right] \times \frac{\Gamma(2p+2)}{\Gamma(n+2p+2)} + \left(\frac{p-1}{p+1} \right)^2 n^{2p-2} \frac{\Gamma(2p+3)}{\Gamma(n+2p+3)} \left[(1+o(1)) \right].$$

Using the identity $x\Gamma(x) = \Gamma(x+1)$ several times we get

$$nP_n = \frac{n^{2p-3}(p-1)^2 n!}{\Gamma(n+2p+1)} \Gamma(2p+1)$$

$$\times \left[1 - \frac{2p+1}{p+1} \frac{n}{n+2p+1} + \frac{(2p+1)n^2}{(p+1)(n+2p+1)(n+2p+2)} \right] (1+o(1)),$$

so the estimate $nP_n = O(n^{-3})$ follows from (18). Next we estimate $n(n+1)Q_n$, again using (15)–(17):

$$n(n+1)Q_n = n^2 n! \left[(p-1)^2 n^{2p-4} \frac{\Gamma^2(p+1)}{\Gamma(n+2p+1)} - 2 \frac{(p-1)^2}{p+1} n^{2p-3} \frac{\Gamma(p+1)\Gamma(p+2)}{\Gamma(n+2p+2)} + \left(\frac{p-1}{p+1} \right)^2 n^{2p-2} \frac{\Gamma^2(p+2)}{\Gamma(n+2p+3)} \right] (1+o(1))$$

$$= \frac{n! n^{2p-2} (p-1)^2 \Gamma^2(p+1)}{\Gamma(n+2p+1)}$$

$$\times \left[1 - \frac{2n}{2p+n+1} + \frac{n^2}{(n+2p+1)(n+2p+2)} \right] (1+o(1)).$$

The expression in square brackets is equal to

$$(-n + (2p + 1)(2p + 2))/(n + 2p + 1)(n + 2p + 2) = O(n^{-1}).$$

Hence it follows from (18) that

$$n(n+1)Q_n = C(p)\frac{n!n^{2p-3}}{\Gamma(n+2p+1)}(1+o(1)) = O(n^{-3}).$$

Thus (b) is proved.

To show (c) we evaluate $E(A_n)$ directly from (15):

$$E(A_n) = (n+1)^{p-1} \sum_{j=0}^n E(U_n^p(n)) = \frac{(n+1)^{p-1} n n! \Gamma(p+1)}{\Gamma(n+p+1)}.$$

We show now that $\gamma_n = (n+1)^{p-1} n n! / \Gamma(n+p+1) \to 1 \ (n \to \infty)$: Clearly $\gamma_n \sim \beta_n = n^p n! / \Gamma(n+p+1)$, so using Stirling's formula,

$$\log \beta_n = p \log n + \left(n + \frac{1}{2}\right) \log(n+1) - (n+1) + \frac{1}{2} \log(2\pi)$$
$$- \left(n + p + \frac{1}{2}\right) \log(n+p+1) + n + p + 1 - \frac{1}{2} \log(2\pi) + o(1)$$
$$= n \lceil \log(n+1) - \log(n+1+p) \rceil + p + o(1).$$

Again, $x[\log(x+d) - \log(x)] \to d$ $(x \to \infty)$, so $\log \beta_n \to 0$ $(n \to \infty)$, proving the assertion. Thus $\lim_n E(A_n) = \Gamma(p+1)$. This completes the proof of (a)-(c) and shows that $A_n^{(p)}$ converges almost surely. What remains is the identification of the limit. Since $E(A_n) \to \Gamma(p+1)$ it is reasonable to expect that $A_n \to \Gamma(p+1)$ since

the limit should be constant a.e. To establish it rigorously we show that $A_n \to \Gamma(p+1)$ in probability. This proof is due to Professor Boris Pittel. Let Y_0, Y_1, \ldots be a sequence of exponentially distributed independent random variables, so that $P(Y_s < t) = 1 - e^{-t}$. Let $S_n = Y_0 + Y_1 + \cdots + Y_n$. It is known that the vectors $(U_0(n), U_1(n), \ldots, U_n(n))$ and $(Y_0/S_n, Y_1/S_n, \ldots, Y_n/S_n)$ have the same distribution (see [5, p. 242]). Therefore the distributions of A_n and

$$(n+1)^{p-1} \left[\sum_{j=0}^{n} Y_{j}^{p} \right] / S_{n}^{p}$$

are also the same. By the strong law of large numbers,

$$\frac{(n+1)^{p-1}\sum_{j=0}^{n}Y_{j}^{p}}{S_{n}^{p}} = \frac{(n+1)^{-1}\sum_{j=0}^{n}Y_{j}^{p}}{(S_{n}/n+1)^{p}} \to \frac{E(Y_{0}^{p})}{(E(Y_{0}))^{p}} = \Gamma(p+1)$$

almost everywhere, and thus in probability. Hence $A_n^{(p)}$ also converges to $\Gamma(p+1)$ in probability. The proof of Theorem 3 is thus completed.

REFERENCES

- 1. J. L. Doob, Stochastic processes, Wiley, New York, 1953.
- 2. V. Drobot, Approximation of curves by polygons (to appear).
- 3. I. S. Gradshtein and I. M. Ryzhik, Tables of integrals, sums and products, Moscow, 1971.
- 4. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Clarendon Press, Oxford, 1960.
 - 5. S. Karlin, A first course in stochastic processes, Academic Press, New York, 1968.
 - 6. L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley, New York, 1974.
- 7. N. B. Slater, Gaps and steps for the sequence nθ mod 1, Proc. Cambridge Philos. Soc. 63 (1967), 1115-1123.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SANTA CLARA, SANTA CLARA, CALIFORNIA 95053